Temporary Page

alpha Proteobacteria

Click on an image to view larger version & data in a new window
Click on an image to view larger version & data in a new window
Containing group: Proteobacteria

Other Names for alpha Proteobacteria


Cho, J.-C. and S. J. Giovannoni. 2003. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the alpha-Proteobacteria. Int. J. Syst. Evol. Microbiol. 53:1031-1036.

Emelyanov, V. V. 2003. Mitochondrial connection to the origin of the eukaryotic cell. Eur. J. Biochem. 270:1599–1618.

Esser, C., N. Ahmadinejad, C. Wiegand, C. Rotte, F. Sebastiani, G. Gelius-Dietrich, K. Henze, E. Kretschmann, E. Richly, D. Leister, D. Bryant, M. A. Steel, P. J. Lockhart, D. Penny, and W. Martin. 2004. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21:1643–1660.

Fitzpatrick, D. A., C. J. Creevey, and J. O. McInerney. 2006. Genome phylogenies indicate a meaningful alpha-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Molecular Biology and Evolution 23(1):74-85.

Garrity, G. M., M. Winters, and D. B. Searles. 2001. Taxonomic Outline of the Procaryotic Genera. Bergey's Manual of Systematic Bacteriology, Second Edition. Release 1.0.

Gupta, R. S. 1995. Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol. 15:1–11.

Gupta, R. S. 2005. Protein signatures distinctive of alpha proteobacteria and its subgroups and a model for alpha-proteobacterial evolution. Critical Reviews in Microbiology 31(2):101-135.

Karlin, S., and L. Brocchieri. 2000. Heat shock protein 60 sequence comparisons: duplications, lateral transfer, and mitochondrial evolution. Proc. Natl. Acad. Sci. USA 97:11348–11353.

Kwon, K. K., H.-S. Lee, S. H. Yang and S.-J. Kim. 2005. Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the ‘Alphaproteobacteria’. Int. J. Syst. Evol. Microbiol. 55:2033-2037.

Lang, B. F., M. W. Gray, and G. Burger. 1999. Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Genet. 33:351–397.

Lee, K.-B. C.-T. Liu, Y. Anzai, H. Kim, T. Aono, and H. Oyaizu. 2005. The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 55:1907-1919.

Moreno, E. 1998. Genome evolution within the alpha Proteobacteria: why do some bacteria not possess plasmids and others exhibit more than one different chromosome? FEMS Microbiol Rev. 22(4):255-75.

Perlman, S. J., M. S. Hunter, and E. Zchori-Fein. 2006. The emerging diversity of Rickettsia. Proceedings of the Royal Society of London Series B 273(1598):2097-2106.

Tsolis, R. M. 2002. Comparative genome analysis of the alpha -proteobacteria: Relationships between plant and animal pathogens and host specificity. Proceedings of the National Academy of Sciences of the United States of America 99(20):12503-12505.

Wu, M., L. V. Sun, J. Vamathevan, M. Riegler, R. Deboy, J. C. Brownlie, E. A. McGraw, W. Martin, C. Esser, N. Ahmadinejad, C. Wiegand, R. Madupu, M. J. Beanan, L. M. Brinkac, S. C. Daugherty, A. S. Durkin, J. F. Kolonay, W. C. Nelson, Y. Mohamoud, P. Lee, K. Berry, M. B. Young, T. Utterback, J. Weidman, W. C Nierman, I. T. Paulsen, K. E. Nelson, H. Tettelin, S. L. O'Neill, and J. A. Eisen. 2004. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2(3): e69.

Information on the Internet

Title Illustrations
Click on an image to view larger version & data in a new window
Click on an image to view larger version & data in a new window
Scientific Name Rickettsia tsutsugamushi
Comments Rickettsia tsutsugamushi within the remains of a phagocytic vacuole of mouse peritoneal mesothelial cell. The phagosome membrane is disintegrating. To the far left is a rickettsia free within the host cell cytoplasm. Between the rickettsias is a mitochondrion. Transmission electron micrograph.
Creator CDC/Dr. Edwin P. Ewing, Jr.
Specimen Condition Dead Specimen
Source Collection Public Health Image Library (Centers for Disease Control)
About This Page

All Rights Reserved.

Citing this page:

Tree of Life Web Project. 2006. alpha Proteobacteria. Version 10 March 2006 (temporary). http://tolweb.org/alpha_Proteobacteria/2303/2006.03.10 in The Tree of Life Web Project, http://tolweb.org/

edit this page
close box

This page is a Tree of Life Branch Page.

Each ToL branch page provides a synopsis of the characteristics of a group of organisms representing a branch of the Tree of Life. The major distinction between a branch and a leaf of the Tree of Life is that each branch can be further subdivided into descendent branches, that is, subgroups representing distinct genetic lineages.

For a more detailed explanation of the different ToL page types, have a look at the Structure of the Tree of Life page.

close box

alpha Proteobacteria

Page Content

articles & notes



Explore Other Groups

random page

  go to the Tree of Life home page