go to the Tree of Life home page
advanced
Temporary Page

Bilateria

Triploblasts, Bilaterally symmetrical animals with three germ layers

Bright red cardinal birdA planarian flatworm, BipaliumArgiope spiderFlamingo tongue snail, Cyphoma gibbosum
taxon links [down<--]Animals [up-->]Deuterostomia [up-->]Arthropoda [up-->]Onychophora [up-->]Tardigrada [up-->]Nematoda [up-->]Nematomorpha [up-->]Kinorhyncha [up-->]Loricifera [up-->]Priapulida Phylogenetic position of group is uncertain [up-->]Chaetognatha Phylogenetic position of group is uncertain [up-->]Gastrotricha Phylogenetic position of group is uncertain [up-->]Rotifera Phylogenetic position of group is uncertain [up-->]Gnathostomulida Phylogenetic position of group is uncertain [up-->]Micrognathozoa Phylogenetic position of group is uncertain [up-->]Cycliophora Phylogenetic position of group is uncertain [up-->]Mesozoa Phylogenetic position of group is uncertain [up-->]Platyhelminthes [up-->]Annelida [up-->]Bryozoa [up-->]Sipuncula [up-->]Mollusca [up-->]Nemertea [up-->]Entoprocta [up-->]Phoronida Monophyly Uncertain [up-->]Brachiopoda Interpreting the tree
close box

This tree diagram shows the relationships between several groups of organisms.

The root of the current tree connects the organisms featured in this tree to their containing group and the rest of the Tree of Life. The basal branching point in the tree represents the ancestor of the other groups in the tree. This ancestor diversified over time into several descendent subgroups, which are represented as internal nodes and terminal taxa to the right.

example of a tree diagram

You can click on the root to travel down the Tree of Life all the way to the root of all Life, and you can click on the names of descendent subgroups to travel up the Tree of Life all the way to individual species.

For more information on ToL tree formatting, please see Interpreting the Tree or Classification. To learn more about phylogenetic trees, please visit our Phylogenetic Biology pages.

close box

This tree represents the view of bilaterian relationships as it is currently emerging from analyses based on molecular data (mostly 18S rRNA sequences). For an alternative hypothesis of bilaterian relationships based on morphological data, see the Discussion of Phylogenetic Relationships.

Containing group: Animals

Discussion of Phylogenetic Relationships

Due to new evidence from developmental biology and molecular phylogenetics, ideas about bilaterian relationships have undergone a major paradigm shift within the last decade. The new hypotheses shown in the tree above are now widely accepted, but there are also many sceptics who emphasize the pitfalls and inconsistencies associated with the new data. One of the most prominent alternative views based on morphological evidence is championed by Nielsen (2001):

Nielsen's view of bilaterian relationships.image info

References

Anderson, F. E., A. J. Cordoba, and M. Thollesson. 2004. Bilaterian phylogeny based on analyses of a region of the sodium-potassium ATPase alpha-subunit gene. Journal of Molecular Evolution 58:252-268.

Adoutte, A., G. Balavoine, N. Lartillot, and R. de Rosa. 1999. Animal evolution, the end of the intermediate taxa? Trends in Genetics 15:104-108.

Aguinaldo, A. M. A., J. M. Turbeville, L. S. Linford, M. C. Rivera, J. R. Garey, R. A. Raff, and J. A. Lake. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489-493.

Balavoine, G. 1997. The early emergence of platyhelminths is contradicted by the agreement between 18S rRNA and Hox genes data. C. R. Acad. Sci. Paris, Sciences de la vie/Life Sciences 320:83-94.

Balavoine, G. 1998. Are Platyhelminthes coelomates without a coelom? An argument based on the evolution of Hox genes. American Zoologist 38:843-858.

Balavoine, G. and A. Adoutte. 1998. One or three cambrian radiations? Science 280:397-398

Balavoine, G., R. de Rosa, and A. Adoutte. 2002. Hox clusters and bilaterian phylogeny. Molecular Phylogenetics and Evolution 24:366-373.

Boore, J. L. and W. M. Brown. 2000. Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: Sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Molecular Biology and Evolution 17:87-106.

Boore, J. L. and J. L. Stanton. 2002. The mitochondrial genome of the sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Molecular Biology and Evolution 19:127-137.

Bourlat, S., C. Nielsen, A. Lockyer, D. T. Littlewood, and M. Telford. 2003. Xenoturbella is a deuterostome that eats molluscs. Nature 424:925-928.

Carranza, S., J. Bagu?a, and M. Riutort. 1997. Are the platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Molecular Biology and Evolution 14:485-497.

deRosa R. 2001. Molecular data indicate the protostome affinity of brachiopods. Systematic Biology 50:848-859.

deRosa R., J. K. Grenier, T. Andreeva, C. E. Cook, A. Adoutte, M. Akam, S. B. Carroll, and G. Balavoine. 1999. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772-776.

Dewel, R. A. and W. C. Dewel. 1998. The place of tardigrades in arthropod evolution. Pages 109-123 in Arthropod Relationships (R.A. Fortey and R.H. Thomas, eds.) The Systematics Association and Chapman and Hall, London.

Eernisse, D. J. 1998. Arthropod and annelid relationships re-examined. Pages 43-56 in Arthropod Relationships (R.A. Fortey and R.H. Thomas, eds.) The Systematics Association and Chapman and Hall, London.

Eernisse, D. J., J. S. Albert, F. E. Anderson. 1992. Annelida and Arthropoda are not sister taxa. A phylogenetic analysis of spiralian metazoan morphology. Systematic Biology 41:305-330.

Erwin, D. H. and E. H. Davidson. 2002. The last common bilterian ancestor. Development 129:3021-32.

Garey, J. R. 2001. Ecdysozoa: The relationship between Cycloneuralia and Panarthropoda. Zoologischer Anzeiger 240: 321-330.

Garey, J. R., M. Krotec, D. R. Nelson, and J. Brooks. 1996. Molecular analysis supports a tardigrade-arthropod association. Invertebrate Biology 115:79-88.

Garey, J. R. and A. Schmidt-Rhaesa. 1998. The essential role of "minor" phyla in molecular studies of animal evolution. American Zoologist 38:907-917.

Giribet, G. 2003. Molecules, development and fossils in the study of metazoan evolution; Articulata versus Ecdysozoa revisited. Zoology 106:303-326.

Giribet, G., S. Carranza, J. Baguna, M. Riutort and C. Ribera. 1996. First molecular evidence for the existence of a Tardigrada plus arthropoda clade. Molecular Biology and Evolution 13:76-84.

Giribet, G., D. L. Distel, M. Polz, W. Sterrer and W. Wheeler. 2000. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Systematic Biology 49:539-562.

Giribet, G. and C. Ribera. 1998. The position of arthropods in the animal kingdom: A search for a reliable outgroup for internal arthropod phylogeny. Molecular Phylogenetics and Evolution 9:481-488.

Giribet, G., M. V. S?rensen, P. Funch, R. M. Kristensen, and W. Sterrer. 2004. Investigations into the phylogenetic position of Micrognathozoa using four molecular loci. Cladistics 20:1-13.

Giribet G. and W. C. Wheeler. 1999. The position of arthropods in the animal kingdom: Ecdysozoa, islands, trees, and the "parsimony ratchet". Molecular Phylogenetics and Evolution 13:619-623.

Halanych, K. M., J. D. Bacheller, A. M. A. Aguinaldo, S. M. Liva, D. M. Hillis, and J. A. Lake. 1995. Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267: 1641-1643.

Halanych, K. 2004. The new view of animal phylogeny. Annual Review of Ecology, Evolution, and Systematics 35:229-256.

Hanelt, B., D. VanSchyndel, C. M. Adema, L. A. Lewis, E. S. Loker. 1996. The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis. Molecular Biology and Evolution 13:1187-1191.

Helfenbein, K. G. and J. L. Boore. 2004. The mitochondrial genome of Phoronis architecta comparisons demonstrate that phoronids are lophotrochozoan protostomes. Molecular Biology and Evolution 21:153-57.

Helfenbein, K. G., H. M. Fourcade, R. G. Vanjani, and J. L. Boore. 2004. The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protosotomes. Proceedings of the National Academy of Sciences (USA) 101:10639-43

Jenner, R. A. and F. R. Schram. 1999. The grand game of metazoan phylogeny: rules and strategies. Biological Reviews 74:121-142.

Jenner, R. A. 2001. Bilaterian phylogeny and uncritical recycling of morphological data sets. Systematic Biology 50:730-742.

Jenner, R. A. 2004. Towards a phylogeny of the Metazoa: evaluating alternative phylogenetic positions of Platyhelminthes, Nemertea, and Gnathostomulida, with a critical reappraisal of cladistic characters. Contributions to Zoology 73 (1-2):3-163.

Katayama, T., H. Wada, H. Furuya, N. Satoh, and M. Yamamoto. 1995. Phylogenetic position of the dycyemid Mesozoa inferred from 18S rDNA sequences. Biological Bulletin 189:81-90.

Kobayashi, M., H. Furuya, and P. W. H. Holland. 1999. Dicyemids are higher animals. Nature 401:762.

Littlewood, D. T. J., M. J. Telford, K. A. Clough, K. Rohde. 1998. Gnathostomulida - an enigmatic metazoan phylum from both morphological and molecular perspectives. Molecular Phylogenetics and Evolution 9:72-79.

L?ter, C. 1997. The phylogenetic position of Brachiopoda - a comparison of morphological and molecular data. Zoologica Scripta 26:245-253.

Mackey, L. Y., B. Winnepenninckx, R. DeWachter, T. Backeljau, P. Emschermann, and J. R. Garey. 1996. 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta. Journal of Molecular Evolution 42:552-559.

Mallatt, J., J. R. Garey, and J. W. Shultz. 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Molecular Phylogenetics and Evolution (31)1:178-191.

Mallatt, J. and C. J. Winchell. 2002. Testing the new animal phylogeny: First use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Molecular Biology and Evolution 19:289-301.

Manuel, M., M. Kruse, W. E. G. M?ller, and Y. L. Parco. 2000. The comparison of -thymosin homologues among Metazoa supports an arthropod-nematode clade. Journal of Molecular Evolution 51:378-81.

McHugh, D. and G. W. Rouse. 1998. Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends in Ecology and Evolution 13: 182-186.

Nielsen, C. 1998. The phylogenetic position of the Arthropoda. Pages 11-22 in Arthropod Relationships (R. A. Fortey and R. H. Thomas, eds.) Systematics Association Special Volume Series 55. Chapman & Hall, London.

Nielsen, C. 2001. Animal Evolution: Interrelationships of the Living Phyla. Second Edition. Oxford University Press, Oxford.

Nielsen, C. 2003. Proposing a solution to the Articulata-Ecdysozoa controversy. Zoologica Scripta 32:475-82.

Nielsen, C., N. Scharff, and D. Eibye-Jacobsen. 1996. Cladistic analyses of the animal kingdom. Biological Journal of the Linnean Society 57:385-410.

Papillon, D., Y. Perez, X. Caubit, and Y. Le Parco. 2004. Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Molecular Biology and Evolution 21(11):2122-2129.

Passamaneck, Y. J. and K. M. Halanych. 2004. Evidence from Hox genes that bryozoans are lophotrochozoans. Evol. Dev. 6:275-281.

Pawlowski, J., J. I. MontoyaBurgos, J. F. Fahrni, J. Wuest, and L. Zaninetti. 1996. Origin of the Mesozoa inferred from 18S rRNA gene sequences. Molecular Biology and Evolution 13:1128-1132.

Peterson, K. J., R. A. Cameron and E. H. Davidson. 2000. Bilaterian origins: Significance of new experimental observations. Developmental Biology 219:1-17.

Peterson, K. J. and D. J. Eernisse. 2001. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution & Development 3:170-205.

Philippe, H., N. Lartillot, and H. Brinkmann. 2005. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Molecular Biology and Evolution 22(5):1246-1253.

Ruiz-Trillo, I., J. Paps, M. Loukota, C. Ribera, U. Jondelius, J. Bagu??, and M. Riutort. 2002. A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proceedings of the Natlional Academy of Sciences (USA) 99:11246-11251.

Ruiz-Trillo, I., M. Riutort, D. T. J. Littlewood, E. A. Herniou, J. Bagu?a. 1999. Acoel flatworms: earliest extant bilaterian metzoans, not members of platyhelminthes. Science 283:1919-1923.

Schmidt-Rhaesa, A., T. Bartolomaeus, C. Lemburg, U. Ehlers, and J. R. Garey. 1998. The position of the Arthropoda in the phylogenetic system. Journal of Morphology 238:263-285.

Schmidt-Rhaesa, A. 1998. Phylogenetic relationships of the nematomorpha - a discussion of current hypotheses. Zoologischer Anzeiger 236:203-216.

Scholtz, G., 2002: The Articulata hypothesis - or what is a segment? Organisms Diversity & Evolution 2:197-215.

Seaver, E. C. 2003. Segmentation: mono- or polyphyletic? Int. J. Dev. Biol. 47:583-595.

S?rensen, M. V., P. Funch, E. Willerslev, A. J. Hansen, and J. Olesen. 2000. On the phylogeny of the Metazoa in light of Cycliophora and Micrognathozoa. Zoologischer Anzeiger 239:297-318.

Stechmann, A. and M. Schlegel. 1999. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes. Procedings of the Royal Society London Series B 266:2043-2052.

Telford, M. J., A. E. Lockyer, C. Cartwright-Finch, and D. T. Littlewood. 2003. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc. R. Soc. London Ser. B 270:1077-83.

Turbeville, J. M., K. G. Field, and R. A. Raff. 1992. Phylogenetic position of phylum Nemertini, inferred from 18s rRNA sequences: Molecular data as a test of morphological character homology. Molecular Biology and Evolution 9:235-249.

Valentine, J. W. 1994. Late Precambrian bilaterians: grades and clades. Proceedings of the National Academy of Sciences (U.S.A.) 91:6751-6757.

Valentine, J. W. 1997. Cleavage patterns and the topology of the metazoan tree of life. Proceedings of the National Academy of Sciences (U.S.A.) 94:8001-8005.

Valentine, J. W. and A. G. Collins. 2000. The significance of moulting in Ecdysozoan evolution. Evolution and Devlopment 2(3):152-156.

von Nickisch-Rosenegk, M., W. M. Brown, and J. L. Boore. 2001. Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: Gene arrangements indicate that platyhelminths are eutrochozoans. Molecular Biology and Evolution 18:721-730.

Wada, H., and N. Satoh. 1994. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proceedings of the National Academy of Sciences (USA) 91:1801-1804.

Waggoner, B. M. 1998. Interpreting the earliest metazoan fossils: What can we learn? American Zoologist 38:975-982.

Winnepenninckx, B., T. Backeljau, and R. M. Kristensen. 1998. Relations of the new phylum Cycliophora. Nature 393:636-638.

Winnepenninckx, B., T. Backeljau, L. Y. Mackey, J. M. Brooks, R. de Wachter, S. Kumar, and J. R. Garey. 1995. 18S rRNA data indicate that aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Molecular Biology and Evolution 12:1132-1137.

Winnepenninckx, B., T. Backeljau, and R. de Wachter. 1995. Phylogeny of protostome worms derived from 18S rRNA sequences. Molecular Biology and Evolution 12:641-649.

Winnepenninckx, B., Y. van de Peer, and T. Backeljau. 1998. Metazoan relationships on the basis of 18S rRNA sequences: a few years later... American Zoologist 38:888-906.

Information on the Internet

Title Illustrations
Scientific Name Cardinalis cardinalis
Location Arizona
Comments A cardinal bird (Deuterostomia)
Specimen Condition Live Specimen
Copyright © 1995 D. Brent Burt
Scientific Name Bipalium
Location Dallas, Texas
Comments A planarian flatworm (Platyhelminthes) after emerging from wet soil after rain
Copyright © Greg and Marybeth Dimijian
Scientific Name Argiope
Location Dallas, Texas
Comments Argiope spider (Arthropoda) on web with stabilimentum
Copyright © Greg and Marybeth Dimijian
Scientific Name Cyphoma gibbosum
Location Cayman Brac
Comments Flamingo tongue snail (Mollusca) with mantle extended over shell, foraging on branched coral
Copyright © 1981 Greg and Marybeth Dimijian
About This Page
Citing this page:

Maddison, David R. 2002. Bilateria. Triploblasts, Bilaterally symmetrical animals with three germ layers. Version 01 January 2002 (temporary). http://tolweb.org/Bilateria/2459/2002.01.01 in The Tree of Life Web Project, http://tolweb.org/

close box

This page is a Tree of Life Branch Page.

Each ToL branch page provides a synopsis of the characteristics of a group of organisms representing a branch of the Tree of Life. The major distinction between a branch and a leaf of the Tree of Life is that each branch can be further subdivided into descendent branches, that is, subgroups representing distinct genetic lineages.

For a more detailed explanation of the different ToL page types, have a look at the Structure of the Tree of Life page.

close box

Bilateria

Page Content

Articles

Notes

Treehouses

Explore Other Groups

random page

top